一道求极限的问题 lim[sin6x+xf(x)]/x^3=0,则lim[6+f(x)]/x^2= (x->0) (x->0)

 我来答
机器1718
2022-06-13 · TA获得超过6764个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:154万
展开全部
利用sinx的麦克劳林公式展开
sin6x=6x-(6x)^3/3!+o(x^3)
f(x)在x=0处展开f(x)=f(0)+f'(0)x+1/2f''(0)x^2+o(x^2)
代入得到
lim[sin6x+xf(x)]/x^3=6x-(6x)^3/3!+o(x^3)+f(0)x+f'(0)x^2+1/2f''(0)x^3+o(x^3)/x^3=0 x→0
整理得lim[6x+f(0)x+f'(0)x^2]/x^3+1/2f''(0)-36=0
从而f(0)=-6 f'(0)=0 1/2f''(0)-36=0 f''(0)=72
lim[6+ f(x)]/x^2=limf''(0)/2=36
x→0
祝你学习愉快
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式