证明3|n(n+1)(2n+1),其中n是任何整数.

 我来答
游戏王17
2022-05-19 · TA获得超过892个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:64.5万
展开全部
首先如果n是3的倍数,或者n+1是3的倍数,题目显然成立.
那么如果n,n+1都不是3的倍数,那么n+2一定是三的毕渗岁倍数,因为任何整数被3除,只能有3种余喊谨数的情况,0,1,2
那么假设n+2=3k,k为整数,n=3k-2
那么2n+1=2(3k-2)+1=6k-4+1=6k-3=3(2k-1)显手睁然是3的倍数
得证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式