已知sin(α+β)=1,求证:tan(2α+β)+tanβ=0

 我来答
舒适还明净的海鸥i
2022-06-14 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.3万
展开全部
证明:∵sin(α+β)=1,∴α+β=2kπ+π2(k∈Z)∴α=2kπ+π2−β(k∈Z),把α代入到等式左边得:tan(2α+β)+tanβ=tan[2(2kπ+π2−β)+β]+tanβ=tan(4kπ+π-2β+β)+tanβ=tan(4kπ+π-β)+tanβ=tan...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式