怎样用短除法求最大公因数和最小公倍数?
展开全部
分解质因数的方法有两种:
1、相乘法
写成几个质数相乘的形式(这些不重复的质数即为质因数),实际运算时可采用逐步分解的方式。
如:36=2*2*3*3 运算时可逐步分解写成36=4*9=2*2*3*3或3*12=3*2*2*3
2、短除法
从最小的质数除起,一直除到结果为质数为止。分解质因数的算式的叫短除法。
扩展资料:
最大公约数的求法:
(1)用分解质因数的方法,把公有的质因数相乘。
(2)用短除法的形式求两个数的最大公约数。
(3)特殊情况:如果两个数互质,它们的最大公约数是1。
如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。
最小公倍数的方法:
(1)用分解质因数的方法,把这两个数公有的质因数和各自独有的质因数相乘。
(2)用短除法的形式求。
(3)特殊情况:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
如果两个数中较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询