证明三角形全等的方法 超简单的
展开全部
1、判定方法一:三边对应相等的两个三角形全等。如AC=D,AD=BC,求证∠A=∠B。 证明:在△ACD与△BDC中,AC=BD,AD=BC,CD=CD,所以△ACD≌△BDC,所以∠A=∠B。
2、判定方法二:三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。如AB平分∠CAD,AC=AD,求证∠C=∠D。证明:因为AB平分∠CAD,所以∠CAB=∠BAD,在△ACB与△ADB中,AC=AD,∠CAB=∠BAD,AB=AB,所以△ACB≌△ADB,所以∠C=∠D。
2、判定方法二:三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。如AB平分∠CAD,AC=AD,求证∠C=∠D。证明:因为AB平分∠CAD,所以∠CAB=∠BAD,在△ACB与△ADB中,AC=AD,∠CAB=∠BAD,AB=AB,所以△ACB≌△ADB,所以∠C=∠D。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询