复数计算(1+i)^7/1-i +(1-i)^7/1+i -(3-4i)(2+2i)^3/4+3i
1个回答
展开全部
(1+i)^7/(1-i)=(1+i)^8/[1-i^2]=[(1+i)^2]^4/2=(2i)^4/2=16i^4/2=8
(1-i)^7/1+i =(1-i)^8/[1-i^2]=[(1-i)^2]^4/2=(-2i)^4/2=16i^4/2=8
(3-4i)(2+2i)^3/(4+3i)=8(1+i)^3(3-4i)/(4+3i)
=16(-1+i)(3-4i)/(4+3i)
=16(1+7i)/(4+3i)
=16(1+7i)(4-3i)/25
=16(25+25i)/25
=16+16i
于是 (1+i)^7/1-i +(1-i)^7/1+i -(3-4i)(2+2i)^3/4+3i
=8+8-16-16i
=-16i
(1-i)^7/1+i =(1-i)^8/[1-i^2]=[(1-i)^2]^4/2=(-2i)^4/2=16i^4/2=8
(3-4i)(2+2i)^3/(4+3i)=8(1+i)^3(3-4i)/(4+3i)
=16(-1+i)(3-4i)/(4+3i)
=16(1+7i)/(4+3i)
=16(1+7i)(4-3i)/25
=16(25+25i)/25
=16+16i
于是 (1+i)^7/1-i +(1-i)^7/1+i -(3-4i)(2+2i)^3/4+3i
=8+8-16-16i
=-16i
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询