怎样运用勾股定理求解直角三角形
1个回答
展开全部
直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)^2=BD·DC, (2)(AB)^2=BD·BC , (3)(AC)^2=CD·BC 。 证明:在 △BAD与△ACD中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴ AD/BD=CD/AD,即(AD)^2=BD·DC。其余类似可证。 注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得: (AB)^2+(AC)^2=BD·BC+CD·BC =(BD+CD)·BC=(BC)^2, 即 (AB)^2+(AC)^2=(BC)^2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询