第一重要极限什么时候可以用?是只有当x趋近于0且是0比0时才可以用吗?
2022-11-15 · 百度认证:北京惠企网络技术有限公司官方账号
sinx~x,只要是这里的x趋向于0,都可以,x可以是未知量,也可以是很复杂的表达式,在极限计算中,可用于乘法关系中,不能用于加减法,一般乘法中作为因式,可以整体替换。
等价无穷小代换不是只能在X趋近于0时才能用的等价无穷小确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0(或f(1/x)=0)。则称f(x)为当x→x0时的无穷小量。
例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
这里值得一提的是,无穷小是可以比较的:假设a、b都是lim(x→x0)时的无穷小,如果limb/a=0,就说b是比a高阶的无穷小,记作b=o(a)
如果lim b/a=∞,就是说b是比a低阶的无穷小。
比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。
假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了。
如果lim b/a^n=常数C≠0(k>0),就说b是关于a的n阶的无穷小, b和a^n是同阶无穷小。
等价无穷小:从无穷小的比较里可以知道,如果limb/a^n=常数,就说b是a的n阶的无穷小,b和a^n是同阶无穷小。
特殊地,如果这个常数是1,且n=1,即limb/a=1,则称a和b是等价无穷小的关系,记作a~b等价无穷小在求极限时有重要应用。
有如下定理:假设lima~a'、b~b'则:lima/b=lima'/b'接着我们要求这个极限lim(x→0)。
sin(x)/(x+3)根据上述定理当x→0时sin(x)~x(重要极限一)x+3~x+3,那么lim(x→0)
sin(x)/(x+3)=lim(x→0)x/(x+3)=0。
扩展资料
用极限思想解决问题的一般步骤:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量。
用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。
极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。
数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。
2023-07-11 广告