勾股定理的十六种证明方法
2022-11-15 · 百度认证:北京惠企网络技术有限公司官方账号
加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法
例,如下图:
设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
扩展资料
性质:
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值,这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。