写10个生活中的数学现象(说明用到数学知识或原理)
1、抽屉原理
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
这里用到的是抽屉原理,抽屉原理的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
2、涨跌停现象
假设你有10万元:
第一种情况:第一天涨停后是11万元,第二天跌停后剩下9.9万元。
第二种情况:第一天跌停后是9万元,第二天涨停后还是9.9万元。
3、补仓或定投现象
假设一个基金净值10元的时候,你买入了1万元。第二个月,基金净值跌到5元的时候,你又买了1万元。
请问:你的持仓成本是多少? A.7.5元 B.6.67元
正确答案:持仓成本是6.67元。
这就是基金定投的魅力,可以让你的持仓成本大幅降低。
4、蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
5、丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!
6、冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
7、保本的资产组合
以下两种投资产品:
假设你有100万元,你投资80万到资产A,投资20万到资产B。
这样你就做出了一个保本的投资组合:最差收益为零,最佳收益为12%。
8、一个带有赌博性质的游戏:主事者将4种不同颜色的球,红、黄、蓝、白每样5个,总共20个,全部放进箱子里,参与者从里面任意摸出10个球。如果4种颜色的组合是5500,就能得到一台莱卡照相机;如果是5410,就送你一条中华烟;但有两个组合是你反过来要给他钱的:一个是3322,一个是4321。
结果玩游戏的人到那儿一抓,经常是3322或4321。这是一道非常容易计算的数学题。西安电子科技大学校长梁昌洪是位数学家,他在学校里组织了几百个学生测试,又在电脑上算,结果都一样:3322和4321所占的比率最高,接近30%;而5500呢,只占十几万分之一。
9、收益率现象:如果你用10万元买了一只股票,涨了100%后是20万;但要再跌50%,就又回到10万元了。要知道,跌50%可比涨100%简单多了。
10、零与无穷大的迷思:“0”也是我感兴趣的数字。我觉得“0”从哲学上说,就是中国人所说的“无”。万物生于有、有生于无,所以无是本源。无当然是本源,因为我们每一个人都生于无。在我们被母亲怀胎之前,我们就是无。
中国人在这个“无”字上是很下功夫的。老子主张无为、无欲,“为学日益,为道日损,损之又损,以至于无为。无为而无不为。”
为什么要“无为无不为”呢?因为有生于无,无又不是都有。所以中国古人又说,无非有,无是没有;无非无,无也不是永远无;无因为能够变成有,所以无非非无,无不是把无给否定了,无本身是不否定无的。无为什么能够变成有呢?因为有了无穷大的帮忙,无和无穷大结合起来,就有可能产生出“有”来。
0和无穷大之间,有和无之间,形成了各种悖论。数学悖论里最基本的问题就是,如果你承认有,那0也是一种有的方式。如果0变成了有的方式,那就太受鼓舞了。
扩展资料:
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
参考资料:百度百科——数学
广告 您可能关注的内容 |