微分方程 x(dx/dy)-y-根号(x^2+y^2)=0的通解
1个回答
展开全部
x(dx/dy)-y-√(x^2+y^2)=0,除以y:(x/y)(dx/dy)-1-√((x/y)^2+1)=0令x/y=u ,代入:u(u+yu')=√(u^2+1)+1yu'= (√(u^2+1)+1)/u-u= (√(u^2+1)+1-u^2)/uudu/ (√(u^2+1)+1-u^2)=dy/ydu^2/ (√(u^2+1)+1-u^2)=2dy/y积分...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |