二重积分转换极坐标r的范围如何确定?

 我来答
妖感肉灵10
2022-11-16 · TA获得超过6.4万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

在直角坐标系中过原点作此区域函数图像的两条切线,则两条切线的角度则为极坐标系中θ的范围。

然后,在直角坐标系下不是已经已知一个关于x,y的函数关系来表示范围。将其中的x²+y²换成r²,x换成rcosθ,y换成rsinθ,就可得r的范围了。

例子如下:

积分区域为:(x-1)²+y²≤1

将关系式变换:(x-1)²+y²≤1 → :x²-2x+1+y²≤1 → r²<2rcosθ → r<2cosθ,所以r范围是(0,2cosθ)。

二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。

扩展资料:

当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。

在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。

参考资料来源:百度百科--二重积分

图为信息科技(深圳)有限公司
2021-01-25 广告
dxdy=rdrdθ根据极坐标和直角坐标的转化公式,代人d的不等式中即可,极坐标的基本公式x=rcosθ,y=rsinθ,由此可知x&#178;+y&#178;=r^2,代人x&#178;+y&#178;≦x+y中有r^2≤rcosθ+rs... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式