矩阵特征值怎么求?
展开全部
从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。
矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。
通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。
扩展资料:
数值计算的原则:
在实践中,大型矩阵的特征值无法通过特征多项式计算,计算该多项式本身相当费资源,而精确的“符号式”的根对于高次的多项式来说很难计算和表达:阿贝尔-鲁费尼定理显示高次(5次或更高)多项式的根无法用n次方根来简单表达。
对于估算多项式的根的有效算法是有的,但特征值的小误差可以导致特征向量的巨大误差。求特征多项式的零点,即特征值的一般算法,是迭代法。最简单的方法是幂法:取一个随机向量v,然后计算一系列单位向量。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询