北师大六年级下册数学知识点?

 我来答
达人方舟教育
2022-10-20 · TA获得超过5156个赞
知道大有可为答主
回答量:4785
采纳率:100%
帮助的人:247万
展开全部

  我为大家收集整理了,供大家学习借鉴参考,希望对你有帮助!

  1

  第一单元 圆

  1、使学生认识圆的特征:圆的半径、直径、圆心。认识在同圆内半径和直径的关系。知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。知道生活中有了圆才使我们的生活更美好。

  2、认识同心圆、等圆。知道圆的位置由圆心决定,圆的大小由半径或直径决定。等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。

  3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。会求组合图形的周长。

  4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。会灵活运用圆的面积公式。已知圆的周长会算圆的面积,会求组合图形的面积。会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。

  6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  第二单元 百分数的应用

  本单元重点讲解百分数在生活中的应用,知识点为: 1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。

  2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联络。

  4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。

  5、知道成数、打折的含义。表示一个数是另一个数十分之几、百分之几的数,叫做成数。打折就是按原价的百分之几十、十分之几出售。八五折就是按原价的85%出售。成数和折扣数不能用小数表示。

  6、能解决“比一个数增加百分之几的数是多少”或“比一个数减少百分之几的数是多少”的实际问题。

  7、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题,会解含有百分数的方程。

  8、能利用百分数的有关知识,解决一些与储蓄有关的实际

  5、能运用比的意义解决按照一定的比进行分配的实际问题,提高解决实际问题的能力。

  拓展能力:能用求比值的方法化简比。

  第五单元 统计

  1、知道复式条形统计图、复式折线统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形统计图、复式折线统计图表示相应的资料,体会资料的作用。

  2、能看懂复式条形统计图,并能根据复式条形统计图中的有关资料作简单的分析,判断和预测。

  3、会进行资料的收集与整理。并通过资料分析发现问题,从而决定用什么什么统计图来描述资料。

  第六单元 观察物体

  1、能正确辨认从不同方向***正面、侧面、上面***观察到的立体图形***5个小正方体组合***的形状,并能画出草图。 2、能根据从正面、侧面、上面观察到的平面图形还原立体图形,进一步体会从三个方面观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。

  问题,提高解决实际问题的能力。知道利息是本金存入银行过一段时间取出后多出来的钱;本金是存入银行的钱;利率就是某段时间中利息占本金的百分比;利息税是国家银行规定的针对利息收入的税收。会计算利息。利息=本金×利率×时间

  9、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

  第三单元 图形的变换

  1、通过观察、操作、想象,知道一个简单图形是怎样经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。并能借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

  2、能利用七巧板在方格纸上变换各种图形。能运用图形的变换在方格纸上设计美丽的图案,进一步体会平移、旋转和轴对称在设计图案中的作用。

  3、欣赏图案,感受图形世界的神奇。通过生活中有趣而美丽的图案,认识数学的美,体会图形世界神奇。

  第四单元 比的认识

  1、能从具体情境中抽象出比的过程,理解比的意义。

  2、能正确读写比,会求比值,理解比与除法、分数的关系。 3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。

  4、理解化简比的必要性,能运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  2

  圆柱和圆锥

  一、 面的旋转

  1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

  2.圆柱的特征:

  ***1***圆柱的两个底面是半径相等的两个圆。 ***2***两个底面间的距离叫做圆柱的高。

  ***3***圆柱有无数条高,且高的长度都相等。

  3.圆锥的特征:

  ***1***圆锥的底面是一个圆。 ***2***圆锥的侧面是一个曲面。 ***3***圆锥只有一条高。

  二、 圆柱的表面积

  1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形***或正方形***。

  ***如果不是沿高剪开,有可能还会是平行四边形***

  2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

  3.圆柱的侧面积公式的应用:

  ***1***已知底面周长和高,求侧面积,可运用公式:

  S侧=ch;

  ***2***已知底面直径和高,求侧面积,可运用公式:

  S侧=dh;

  ***3***已知底面半径和高,求侧面积,可运用公式:

  S侧=2rh

  4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:

  S表=S侧+2S底2或S表=dh+d/2=2或S表=2rh+2r

  5.圆柱表面积的计算方法的特殊应用:

  ***1***圆柱的表面积只包括侧面积和一个底面积的,

  例如无盖水桶等圆柱形物体。

  ***2***圆柱的表面积只包括侧面积的,例如烟囱、油

  管等圆柱形物体。

  三、 圆柱的体积

  1. 圆柱的体积:一个圆柱所占空间的大小。

  2. 圆柱的体积=底面积×高。如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

  3. 圆柱体积公式的应用:

  ***1*** 计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

  ***2*** 已知圆柱的底面半径和高,求体积,可用公式:V2=rh;

  ***3*** 已知圆柱的底面直径和高,求体积,可用公式:V2=***d/2***h;

  ***4*** 已知圆柱的底面周长和高,求体积,可用公式:V2=***C/2***h;

  圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

  5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

  四、 圆锥的体积

  1. 圆锥只有一条高。

  2. 圆锥的体积=1/3×底面积×高。

  如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh 3. 圆锥体积公式的应用:

  ***1***求圆锥体积时,如果题中给出底面积和高

  这两个条件,可以直接运用“v= 1/3 Sh”这一公式。

  ***2***求圆锥体积时,如果题中给出底面半径和

  高这两个条件,可以运用1/3πr²h

  ***3***求圆锥体积时,如果题中给出底面直径和

  高这两个条件,可以运用1/3π***d/2***²h

  ***4***求圆锥体积时,如果题中给出底面周长和

  高这两个条件,可以运用1/3π***c/2r***²h

  正比例和反比例

  一、 变化的量

  生活中存在着大量互相依存的变数,一种量变化,另一种量也随着变化。

  二、 正比例

  1. 正比例的意义:两种相关联的量,一种量变化,

  另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母x和y表示两种相关联的量,用字母k表示它们的比值***一定***,正比例关系可以表示为:y/x=k***一定***。

  2. 应用正比例的意义判断两种量是否成正比例:有

  些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

  三、 画一画

  正比例的影象是一条直线。 四、 反比例

  1. 反比例的意义:两种相关联的量,一种量变化,

  另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k***一定***。 2. 判断两个量是不是成反比例:要先想这两个量是

  不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

  五、 观察与探究

  当两个变数成反比例关系时,所绘成的影象是一条光滑曲线。

  六、 图形的放缩

  一幅图放大或缩小,只有按照相同的比来画,画的图才像。

  七、 比例尺

  1. 比例尺:图上距离与实际距离的比,叫做这幅图

  的比例尺。图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 2. 比例尺的分类:比例尺根据实际距离是缩小还是

  扩大,分为缩小比例尺和放大比例尺。根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

  3. 比例尺的应用:

  ***1***、已知比例尺和图上距离,求实际距离

  比例尺=图上距离÷实际距离 图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 2 / 2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式