根据函数极限定义证明lim (x→0)xsin(1/x)=0?

 我来答
世纪网络17
2022-10-11 · TA获得超过5908个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:138万
展开全部
令f(x)=xsin(1/x) lim (x→0)xsin(1/x)=lim(△x→0)((f(x+△x)-f(x))/(x-△x))=(((x+0)sin(1/(x+0))-xsin(1/x))/(x-0)=0/x=o,1,对任意的e>0,取δ=e,当|x-0|<δ时|xsin(1/x)-0|≤|x-0|<e,所以lim (x→0)xsin(1/x)=0,2,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式