如何证明△ABC是直角三角形?
展开全部
∵AD是BC边的中线,
∴BD=CD=1/2BC,
∵AD=1/2BC,
∴BD=AD=CD,
∴∠1=∠B,∠2=∠C,
∴∠1+∠2=∠B+∠C,
即∠BAC=∠B+∠C,
∵2∠BAC=∠BAC+∠B+∠C=180°(三角形内角和180°),
∴∠BAC=90°,
∴△ABC是直角三角形。
扩展资料:
如果直角三角形斜边上一点与直角顶点的连线与该点分斜边所得两条线段中任意一条相等,那么该点为斜边中点。
几何语言:在Rt△ABC中,∠ACB=90°,D在AB上,且AD=CD(或BD=CD),则AD=BD。
设 三角形的两个直角边长度分别为 a ,b,将三角形ABC 顶点A放置,AC在+Y 轴线 AB在+x轴
直角边AC对应的复数为 ai 直角边 BC对应的复数为b
斜边BC 对应的复数为z1=-b+ai, BC中点D ,BD的复数为做z2=1/2 *z1=-b/2+ai/2
AD 对应的复数为 z2-A =-b/2+ai/2-ai=-b/2-ai/2 显然 |z2-A| =|z1|/2 所以中线等于斜边的一半
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询