弧的长度怎么算?弧长怎么求?
1个回答
展开全部
高数弧长ds的三种公式:s=∫ds=∫sqrt((dx)^2+(dy)^2)=∫dx*sqrt(1+(dy/dx)^2)=∫sqrt(1+f'^2(x))dx。
sqrt()是根号,()^2是()的平方。
注:ds与dx,dy是勾股关系:即dx,dy是两个直角边,ds是弧的微分,把此微弧看做直线段故ds=√(dx+dy);然后将根号里的两项都除以dt,再在根号外乘以dt就等于没乘没除了,公就是这么来的。
简介
弧长函数(arc length function),是指量度弧长的函数。设Γ为定义在[a,b]上的可求长曲线,对t∈[a,b],Γ的参数表示φ对[a,t]的限制所表示的曲线的长度记为L(t),如此定义的函数L:[a,b]→[0,l]称为弧长函数,这里l是Γ的长度,L是严格增函数。
存在反函数L-1:[0,l]→[a,b],复合函数φ°L-1:[0,l]→Rn称为Γ的以弧长为参数的表示,弧长参数以s表示,这样,Γ有参数方程x=φ(L-1(s)),s∈[0,l]。每一条可求长曲线都有以弧长为参数的表示,这种表示称为曲线的自然方程。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询