函数连续和导数连续的关系?
关于函数的可导导数和连续的关系:
1、连续的函数不一定可导。
2、可导的函数是连续的函数。
3、越是高阶可导函数曲线越是光滑。
4、存在处处连续但处处不可导的函数。
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。
函数在某点可导的充要条件是左右导数相等且在该点连续。显然,如果函数在区间内存在“折点”,(如f(x)=|x|的x=0点)则函数在该点不可导。
扩展资料:
如果一个函数的定义域为全体实数,即函数在其上都有定义,函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
2. 是 中的一个聚点,并且无论自变量 在 中以什么方式接近 , 的极限都存在且等于 。
我们称函数到处连续或处处连续,或者简单的称为连续,如果它在其定义域中的任意一点处都连续。更一般地,当一个函数在定义域中的某个子集的每一点处都连续时,就说这个函数在这个子集上是连续的。
参考资料:百度百科——可导
参考资料:百度百科——连续
广告 您可能关注的内容 |