什么叫中国剩余定理
中国剩余定理释义:又称“孙子定理”。1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲。1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”。
孙子定理是中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国余数定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
扩展资料:
中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组 有解,并且通解可以用如下方式构造得到:设 是整数m1,m2, ... ,mn的乘积,并设 是除了mi以外的n- 1个整数的乘积。
一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?
即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位将解法编成易于上口的《孙子歌诀》:
三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五使得知
这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后减去105(或者105的倍数),得到的余数就是答案。比如说在以上的物不知数问题里面,按歌诀求出的结果就是23。
参考资料:百度百科---孙子定理
2023-07-25 广告