设向量组a1,a2,a3线性无关,又设b1=a3,b2=a2+a3,b3=a1+a2+a3,证明:b1,b2,b3也线性无关

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8782万
展开全部

一、b1, b2 ,b3线性相关,则存在不全为0的 x、y、z 满足x*b1+y*b2+z*b3=0,

代入b1, b2 ,b3,整理得到(x+k*z)*a1+(y-k*x)*a2+(y+z)*a3=0,

因为a1,a2,a3不相关,所以x+k*z=0,y-k*x=0,y+z=0,

又x、y、z不全为0,所以可得到k=+1或-1

二、假设存在一组实数k1,k2,k3,使得k1b1+k2b2+k3b3=0,

即  k1(a1-2a1)+k2(a2-a3)+k3(a1-2a3)=(k1+k3)a1+(-2k1+k2)a2+(-k2-2k3)a3=0.

因为向量组a1,a2,a3线性无关,所以

k1+k3=0

?2k1+k2=0

?k2?2k3=0

扩展资料:

向量组A:a1,a2,?am与向量组B:b1,b2,?bn的等价秩相等条件是

R(A)=R(B)=R(A,B),

其中A和B是向量组A和B所构成的矩阵。

(注意区分粗体字与普通字母所表示的不同意义)

或者说:两个向量组可以互相线性表示,则称这两个向量组等价。

注:

1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。

2、任一向量组和它的极大无关组等价。

3、向量组的任意两个极大无关组等价。

4、两个等价的线性无关的向量组所含向量的个数相同。

5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。

参考资料来源:百度百科-等价向量组

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式