已知abc属于R+求证 1.(a+b+c)(a^2+b^2+c^2)≥9abc (2).

 我来答
回从凡7561
2022-10-27 · TA获得超过789个赞
知道小有建树答主
回答量:297
采纳率:100%
帮助的人:52.3万
展开全部
abc属于R+
由均值不等式
a+b+c>=3(abc)的立方根
a^2+b^2+c^2>=3(a^2b^2c^2)的立方根
所以(a+b+c)(a^2+b^2+c^2)>=9*(a^3b^3c^3)的立方根
即(a+b+c)(a^2+b^2+c^2)>=9abc
同理
a/b+b/c+c/a>=3(a/b*b/c*c/a)的立方根=3
b/a+c/b+a/c>=3(b/a*c/b*a/c)的立方根=3
所以(a/b+b/c+c/a)(b/a+c/b+a/c)>=9
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式