什么是振荡间断点?

 我来答
帐号已注销
2023-01-05 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

振荡间断点是指当函数f(x)趋向于x0时,极限不稳定存在的点。sin(1/x)在x=0处是典型的极限不稳定存在的例子。

不是第一类间断点的点为第二间断点,即左右极限至少有一个不存在。第二类间断点又有无穷间断点和振荡间断点。

第二类又可分为两类:即无穷间断点和振荡间断点。这二者的区分也是很显然的。无穷间断点,要求极限值一直保持无穷大。而振荡间断点在趋近它的时侯,取值在不断的变化,不一定为无穷。

四类间断点区别

左右极限为无穷的间断点,叫做无穷间断点,其中无穷是一个可以解出的答案,用∞表示,但一般视为极限不存在。例:tanx在x=π/2时极限为∞,x=π/2为函数的无穷间断点。其中的结果∞是一个非常重要的符号,不能简单的用中学课本上习惯常说的一句无意义来表示,原因是∞.0型等含有∞的未定式的存在。

以上内容参考:百度百科-震荡间断点

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式