如何计算圆的曲率半径?
展开全部
曲率半径的计算公式为κ=lim|Δα/Δs|。
对于直线上任一点,和直线在该点相切的圆的半径可以任意大,所以直线的曲率半径为无穷大(对应于曲率为零,也就是“不弯曲”)。而在圆上,每一点的密切圆就是其本身,故其曲率半径为其本身的半径。抛物线顶点曲率半径为焦准距(顶点到焦点距离的两倍)。
对于y=f(x),曲率半径等于(1+(f ')^2)^(3/2)/ |f "| 。
圆形半径越大,弯曲程度就越小,也就越近似于一条直线。所以说,曲率半径越大曲率越小,反之亦然。
如果对于某条曲线上的某个点可以找到一个与其曲率相等的圆形,那么曲线上这个点的曲率半径就是该圆形的半径。
这个点的曲率半径,其他点有其他的曲率半径。就是把那一段曲线尽可能地微分,直到最后近似为一个圆弧,此圆弧所对应的半径即为曲线上该点的曲率半径
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询