二重积分变上限求导,怎么实现的?

 我来答
妖感肉灵10
2022-11-16 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

这就是简单的变上限定积分求导,如图改个记号就很清楚了。

有许多二重积分仅仅依靠 直角坐标下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等,或被积函数为:

等形式时,采用 极坐标会更方便。

在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式:

在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式