关于柯西审敛原理的解释

 我来答
妖感肉灵10
2022-11-16 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.3亿
展开全部

柯西审敛原理:数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε。

这含银个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε。

注意:柯西收敛原理标明,由实数构成的基本数列一定存在实数极限,这个性质被称为是实数系的完备性。但是要注意有理数集不具备完备性。

扩展资料

柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充谈谈宴要条件(不限于数列),主要应用在以下方面:

(1)数列

(2)数项级数

(3)函数

(4)反常积分

(5)函数列和函数项级数

每个方面都对应一个柯西准则,因此下文将按照不同的方面对准则进行说明。

参考资料来源侍升:百度百科-柯西审敛原理

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式