请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)?
用协方差的公式:
COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY
那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
期望值分别为E(X) = μ 与 E(Y) = ν 的两个实数随机变量X与Y之间的协方差定义为:COV(X,Y)=E[(X-E(X))(Y-E(Y))]
等价计算式为COV(X,Y)=E(XY)-E(X)E(Y)
扩展资料:
协方差在农业上的应用
农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。
比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。
要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。
当两个变量相关时,用于评估它们因相关而产生的对应变量的影响。
当多个变量独立时,用方差来评估这种影响的差异。
当多个变量相关时,用协方差来评估这种影响的差异。
参考资料来源:百度百科—协方差