∠A+∠B+∠C=180°,怎么证明?
1个回答
展开全部
第一种方法:
如图①,△ABC中,延长BC到D,过C作CE‖BA
∴∠B=∠ECD(同位角相等),且∠A=∠ACE(内错角相等)
∵∠ACB+∠ACE+∠ECD=180°(平角)
把上述角代换,得:
∠ACB+∠B+∠A=180°
∴三角形内角和等于180度
第二种方法:
用拼图法,这也是证明题常用的方法。如图②,你一看就明白的。
第三种方法:如图③
三角形都有外接圆,∠A对BC弧,∠B对AC弧,∠C对AB弧。
有个定理:圆周角的度数等于所对弧的度数的一半。
∴∠A+∠B+∠C=1/2 (BC弧+AC弧+AB弧)
就是:∠A+∠B+∠C=1/2 ×360°=180°
∴三角形内角和等于1
如图①,△ABC中,延长BC到D,过C作CE‖BA
∴∠B=∠ECD(同位角相等),且∠A=∠ACE(内错角相等)
∵∠ACB+∠ACE+∠ECD=180°(平角)
把上述角代换,得:
∠ACB+∠B+∠A=180°
∴三角形内角和等于180度
第二种方法:
用拼图法,这也是证明题常用的方法。如图②,你一看就明白的。
第三种方法:如图③
三角形都有外接圆,∠A对BC弧,∠B对AC弧,∠C对AB弧。
有个定理:圆周角的度数等于所对弧的度数的一半。
∴∠A+∠B+∠C=1/2 (BC弧+AC弧+AB弧)
就是:∠A+∠B+∠C=1/2 ×360°=180°
∴三角形内角和等于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询