如何求二阶常系数非齐次线性微分方程的特解?
1个回答
展开全部
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y设法分为:
1、如果f(x)=P(x) ,Pn (x)为n阶多项式。
2、如果f(x)=P(x) e'a x,Pn (x)为n阶多项式。
二阶常系数非齐次线性微分方程常用的几个:
1、Ay''+By'+Cy=e^mx
特解 y=C(x)e^mx
2、Ay''+By'+Cy=a sinx + bcosx
特解 y=msinx+nsinx
3、Ay''+By'+Cy= mx+n
特解 y=ax
二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数,自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。
若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的,特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询