如何用直线方程求直线斜率?
1个回答
展开全部
k=tanα=(y2-y1)/(x2-x1)或(y1-y2)/(x1-x2)。
斜率,亦称“角系数”,表示一条直线相对于横轴的倾斜程度。一条直线与某平面直角坐标系横轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率。
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。 当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
扩展资料:
直线斜率相关
当直线L的斜率不存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b.
参考资料:百度百科-斜率
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |