如何用三角形的边角关系求最值?
1个回答
展开全部
由余弦定理:a^2+b^2-c^2-2abcosC=0
正弦定理:a/sinA=b/sinB=c/sinC=2R
得 (sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0
转化 1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0
即 (cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0
又 cos(C)=-cos(A+B)=sinAsinB-cosAcosB
得 (cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0
(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
扩展资料:
设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示;当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询