如何通过一个常微分方程求出其通解?

 我来答
十全秀才95
2023-07-10 · TA获得超过434个赞
知道大有可为答主
回答量:7615
采纳率:94%
帮助的人:256万
展开全部

解:请把具体题目发过来,如下图:

解常微分方程

解:微分方程为dy/dx+(1+xy³)/(1+x³y)=0,(1+x³y)dy+(1+xy³)dx=0,dy+x³ydy+dx+xy³dx=0,dy+dx+x³ydy+y³xdx=0,d(x+y)+x³y³(dy/y²+dx/x²)=0,d(x+y)-x³y³(-dy/y²-dx/x²)=0,d(x+y)=x³y³d(1/y+1/x),d(x+y)=x³y³d[(x+y)/xy];设x+y=u,xy=v,方程化为du=v³d(u/v),再设u=zv,方程化为d(zv)=v³dz,zdv+vdz=v³dz,zdv=(v³-v)dz,dv/(v³-v)=dz/z,vdv/(v²-1)-dv/v=dz/z,0.5ln|v²-1|-ln|v|=ln|z|+0.5ln|a|(a为任意非零常数),ln|v²-1|=ln|av²z²|,v²-1=av²z²,有v²-1=au²,微分方程的解为x²y²-1=a(x+y)²请参考

小熊玩科技gj
高能答主

2022-10-08 · 世界很大,慢慢探索
知道大有可为答主
回答量:2.2万
采纳率:100%
帮助的人:571万
展开全部

常微分方程dy/dx=e^(x-y)的通解为ln(e^x+c1)。

解答过程如下:

dy/dx=e^x/e^y

e^ydy=e^xdx

e^y=e^x+c1

y=ln(e^x+c1)

一阶微分方程的普遍形式

一般形式:F(x,y,y')=0

标准形式:y'=f(x,y)

主要的一阶微分方程的具体形式

扩展资料

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式