常微分方程的解题思路

 我来答
户如乐9318
2022-08-25 · TA获得超过6684个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:142万
展开全部
参考《高等数学》微分方程 一章.如果没有,我发给你.(推荐同济大学版 ,高等教育出版社)
简单来说,
常微分方程的求解就是求特征根
如 y''-y'-2y =0
它的特征方程对应就是 r^2 - r -2 =0 (这个会写吧,和上面对应的)
特征根就是 r= 2 ,-1
下一步就是根据特征根写出通解
y= C1*e^(2x) + C2*e^(-x)
注:对于有重根,复数根的情况,通解相对复杂,请参考《高等数学》
如果已知两个边界条件,你就可以求出 C1 C2的值了.
以上是齐次常微分方程的求解,这个解称为 齐次解.
对于非齐次的,它的解 y = 齐次解 + 特解
如 y''-y'-2y =e^x
我们可依 e^x 的格式设 特解为 y*=A*e^x (具体格式看看书吧)
代入上式,可知A= -0.5
可知解为 y = C1*e^(2x) + C2*e^(-x) 0.5e^x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式