x^2/(1+x^2)^2的积分是多少,怎么算

 我来答
机器1718
2022-07-19 · TA获得超过6854个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
∫ x^2/(1+x^2)^2 dx
= ∫ dx/(1+x^2) -∫ dx/(1+x^2)^2
=arctanx -∫ dx/(1+x^2)^2
let
x=tany
dx = (secy)^2 dy
∫ dx/(1+x^2)^2
=∫ (cosy)^2 dy
=(1/2)∫ (1+cos2y) dy
=(1/2)[ y+(1/2)sin(2y) ]
=(1/2)[ arctanx +( x/(1+x^2) ) ]
∫ x^2/(1+x^2)^2 dx
=arctanx -∫ dx/(1+x^2)^2
=arctanx -(1/2)[ arctanx +(x/(1+x^2)) ]
=(1/2)arctanx -(1/2)[x/(1+x^2)] + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式