已知数列{an}中,a1=1,an=2an-1+3的n次方,求an 急
展开全部
an-3^(n+1)=2a(n-1)+3^n-3^(n+1)
3^n-3^(n+1)=3^n-3*3^n=-2*3^n
所以an-3^(n+1)=2a(n-1)-2*3^n=2[a(n-1)-3^n]
[an-3^(n+1)]/[a(n-1)-3^n]=2
所以
an-3^(n+1)是等比数列,q=2
a1-3^(1+1)=a-9
所以an-3^(n+1)=(a-9)*2^(n-1)
an=(a-9)*2^(n-1)+3^(n+1)
注意3^n是3的n次方
3^n-3^(n+1)=3^n-3*3^n=-2*3^n
所以an-3^(n+1)=2a(n-1)-2*3^n=2[a(n-1)-3^n]
[an-3^(n+1)]/[a(n-1)-3^n]=2
所以
an-3^(n+1)是等比数列,q=2
a1-3^(1+1)=a-9
所以an-3^(n+1)=(a-9)*2^(n-1)
an=(a-9)*2^(n-1)+3^(n+1)
注意3^n是3的n次方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询