1×2矩阵怎么求值
1个回答
展开全部
左边矩阵的行的每一个元素 与右边矩阵的列的对应的元素一一相乘然后加到一起形成新矩阵中的aij元素 i是左边矩阵的第i行 j是右边矩阵的第j列
例如 左边矩阵:
2 3 4
1 4 5
右边矩阵
1 2
2 3
1 3
相乘得到: 2×1+3×2+4×1 2×2+3×3+4×3
1×1+4×2+5×1 1×2+4×3+5×3
这样2×2阶的一个矩阵
扩展资料:
矩阵乘法
(1) mxn的矩阵T乘向量x可以理解为将这个n维列向量线性映射为一个m维列向量:
(2) 而一个mxn矩阵乘nxL 矩阵就是先进行一个线性映射再进行一个线性映射.
这叫做线性映射的复合。线性映射的复合是另一个线性映射。映射T和映射S的复合记做:T o S.
将映射表示为矩阵。则线性映射的复合就是对应的矩阵相乘.
(3) 由于复合映射的前一个映射的目标空间是另一个的域空间。所以矩阵乘法要求第一个的列数要等于第二个的行数。
将新基矩阵T的每一行向量看做一个用原基向量(i,j,k,...)表示的一个新的轴/基,若共R行,即R维度,新的空间共R个轴,将X的每一列都看做为一组特征向量,每一列的特征相同都是n维的点(x11,x12,..,x1n)(x1表示第一列向量),只是不同列的赋值不同。
相乘的结果为矩阵Y,那么Y内的某个值,即是某列特征在某个轴上的投影大小,Y的某行向量,即是所有特征在某轴上的投影结果,Y的列向量,即是某个特征(原坐标的一个点)在新的空间的投影/新值,R维的点(t1x1,t2x1,...,trx1)。
Y矩阵表示的是,原坐标中所有点,通过T坐标空间的转换,得到的新的空间点集合。
例如 左边矩阵:
2 3 4
1 4 5
右边矩阵
1 2
2 3
1 3
相乘得到: 2×1+3×2+4×1 2×2+3×3+4×3
1×1+4×2+5×1 1×2+4×3+5×3
这样2×2阶的一个矩阵
扩展资料:
矩阵乘法
(1) mxn的矩阵T乘向量x可以理解为将这个n维列向量线性映射为一个m维列向量:
(2) 而一个mxn矩阵乘nxL 矩阵就是先进行一个线性映射再进行一个线性映射.
这叫做线性映射的复合。线性映射的复合是另一个线性映射。映射T和映射S的复合记做:T o S.
将映射表示为矩阵。则线性映射的复合就是对应的矩阵相乘.
(3) 由于复合映射的前一个映射的目标空间是另一个的域空间。所以矩阵乘法要求第一个的列数要等于第二个的行数。
将新基矩阵T的每一行向量看做一个用原基向量(i,j,k,...)表示的一个新的轴/基,若共R行,即R维度,新的空间共R个轴,将X的每一列都看做为一组特征向量,每一列的特征相同都是n维的点(x11,x12,..,x1n)(x1表示第一列向量),只是不同列的赋值不同。
相乘的结果为矩阵Y,那么Y内的某个值,即是某列特征在某个轴上的投影大小,Y的某行向量,即是所有特征在某轴上的投影结果,Y的列向量,即是某个特征(原坐标的一个点)在新的空间的投影/新值,R维的点(t1x1,t2x1,...,trx1)。
Y矩阵表示的是,原坐标中所有点,通过T坐标空间的转换,得到的新的空间点集合。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询