用泰勒公式求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n)(0)(n≥3)
1个回答
展开全部
【答案】:这个直接展开成x的多项式形式就好了
先用泰勒公式展开ln(1+x)=((-1)^n)*(1/n)*x^n
然后把x^2乘进去就好了!~~
即f(x)=x^2ln(1+x)=((-1)^n)*(1/n)*x^n+2
这个之所以是f(x)的n阶导是因为 f(x)是可以展开成上面那个关于x的级数的多项式,其中这个多项式的第n项必然为这个函数的n阶导数,因为前面低于n阶的都在求导时为0了。
先用泰勒公式展开ln(1+x)=((-1)^n)*(1/n)*x^n
然后把x^2乘进去就好了!~~
即f(x)=x^2ln(1+x)=((-1)^n)*(1/n)*x^n+2
这个之所以是f(x)的n阶导是因为 f(x)是可以展开成上面那个关于x的级数的多项式,其中这个多项式的第n项必然为这个函数的n阶导数,因为前面低于n阶的都在求导时为0了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询