怎样求x^3的导数?
^^^y=x^bai(1/3)
那么y'=lim(dx->0) [(x+dx)^du(1/3) -x^(1/3)] /dx
注意由立方差公式可以得到
(x+dx)^(1/3) -x^(1/3)
=(x+dx -x) / [(x+dx)^(2/3) + (x+dx)^(1/3)*x^(1/3) +x^(2/3)]
=dx / [(x+dx)^(2/3) + (x+dx)^(1/3)*x^(1/3) +x^(2/3)]
所以y'=lim(dx->0) 1 / [(x+dx)^(2/3) + (x+dx)^(1/3)*x^(1/3) +x^(2/3)]
代入dx=0,
得到y'= 1 /[x^(2/3) +x^(1/3)*x^(1/3) +x^(2/3)]
=1/3 *x^(-2/3)
扩展资料
导数公式:
1、C'=0(C为常数);
2、(Xn)'=nX(n-1) (n∈R);
3、(sinX)'=cosX;
4、(cosX)'=-sinX;
5、(aX)'=aXIna (ln为自然对数);
6、(logaX)'=1/(Xlna) (a>0,且a≠1);
7、(tanX)'=1/(cosX)2=(secX)2
8、(cotX)'=-1/(sinX)2=-(cscX)2
9、(secX)'=tanX secX;
10、(cscX)'=-cotX cscX;