如何计算不定积分呢?

 我来答
吉禄学阁

2023-05-22 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62495

向TA提问 私信TA
展开全部

例如三种方式计算不定积分∫x√(x+2)dx。

 

  • 主要内容:

通过根式换元、分项凑分以及分部积分法等相关知识,介绍不定积分∫x√(x+2)dx的三种计算方法和步骤。

 

  • 根式换元法:

设√(x+2)=t,则x=(t^2-2),代入得:

∫x√(x+2)dx

=∫t*(t^2-2)d(t^2-2),

=2∫t^2*(t^2-2)dt,

=2∫(t^4-2t^2)dt,

=2/5*t^5-4/3*t^3+C,

=2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,

 

  • 根式部分凑分法

∫x√(x+2)dx

=∫x√(x+2)d(x+2),

=2/3∫xd(x+2)^(3/2),

=2/3*x(x+2)^(3/2)- 2/3∫(x+2)^(3/2)dx,

=2/3*x(x+2)^(3/2)- 4/3∫(x+2)^(3/2)d(x+2),

=2/3*x(x+2)^(3/2)- 4/15*(x+2)^(5/2)+C,

 

  • 整式部分凑分法

A=∫x√(x+2)dx,

=(1/2)∫√(x+2)dx^2,

=(1/2)x^2√(x+2)-(1/2)∫x^2d√(x+2),

=(1/2)x^2√(x+2)-(1/4)∫x^2/√(x+2)dx,

=(1/2)x^2√(x+2)-(1/4)∫[x(x+2)-2*(x+2)+4]/√(x+2)dx,

=(1/2)x^2√(x+2)-(1/4)A+1/2∫√(x+2)dx-∫dx/√(x+2),

即:(5/4)A=(1/2)x^2√(x+2)+1/2∫√(x+2)dx-2∫dx/2√(x+2),

A=(2/5)x^2√(x+2)+2/5∫√(x+2)d(x+2)-8/5√(x+2),

A=(2/5)x^2√(x+2)+4/15(x+2)^(3/2)-8/5*√(x+2)+C。

    • 不定积分概念

    设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

    其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

    • 不定积分的计算

    求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

    不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

     

    北京埃德思远电气技术咨询有限公司
    2023-07-25 广告
    整定计算是继电保护中的一项重要工作,旨在通过分析计算和整定,确定保护配置方式和整定值,以满足电力系统安全稳定运行的要求。在进行整定计算时,需要考虑到电力系统的各种因素,如电压等级、线路长度、变压器容量、负载情况等等,以及各种保护设备的特性、... 点击进入详情页
    本回答由北京埃德思远电气技术咨询有限公司提供
    迷丝2
    2023-03-23 · TA获得超过5473个赞
    知道答主
    回答量:918
    采纳率:27%
    帮助的人:19.2万
    展开全部

    (1)∫e^x dx = e^x + c

    (2)∫xe^xdx = xe^x - e^x + c

    不定积分的公式

    1、∫ a dx = ax + C,a和C都是常数

    2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

    3、∫ 1/x dx = ln|x| + C

    4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

    5、∫ e^x dx = e^x + C

    6、∫ cosx dx = sinx + C

    7、∫ sinx dx = - cosx + C

    8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

    已赞过 已踩过<
    你对这个回答的评价是?
    评论 收起
    推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

    为你推荐:

    下载百度知道APP,抢鲜体验
    使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
    扫描二维码下载
    ×

    类别

    我们会通过消息、邮箱等方式尽快将举报结果通知您。

    说明

    0/200

    提交
    取消

    辅 助

    模 式