偏导数是否一定驻点?
1个回答
展开全部
x= abcxyz,y = abcyz,∂u/∂y = abcxz,∂u/∂z = abcxy。
不一定驻点既是对x,y的一阶偏导数等于0的点在该点是否取得极值由AC-B^2的正负给出。
比如:∂²u/∂x∂y = abcz,∂²u/∂x∂z = abcy,∂²u/∂y∂z = abcx。
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
在一元函数中,导数就是函数的变化率。对于二元函数研究它的"变化率",由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询