数学建模流程

 我来答
跑路人J
2023-06-09 · TA获得超过203个赞
知道大有可为答主
回答量:4073
采纳率:98%
帮助的人:81.8万
展开全部

数学建模的七个具体步骤如下:

1、明确问题

数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。

2、合理假设

作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。合理假设的作用除了简化问题,还对模型的使用范围加以限定。

3、搭建模型

搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。

4、求解模型

对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。

5、分析检验

数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。

6、模型解释

数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步

7、确定结论

对预测结果进行分析和评价,得出有效的结论,并根据实际需求提出合理化建议和措施。

啷个理当a
2023-06-09 · 超过27用户采纳过TA的回答
知道答主
回答量:1817
采纳率:100%
帮助的人:36.7万
展开全部

数学建模的过程包括:模型准备、模型假设、模型建立、模型求解、模型的分析与检验、模型应用。

(1)模型准备

要建立实际问题的数学模型,首先要对需要解决问题的实际背景和内在机理进行深刻的了解,通过适当的调查和研究明确所解决的问题是什么?所要达到的主要目的是什么?

(2)模型假设

要建立一个数学模型,就要对所研究的问题和收集到的相关信息进行分析,将那些反映问题本质属性的形态量及其关系抽象出来,而简化掉那些非本质的因素,使之摆脱实际问题的集体复杂形态,形成对建立模型有用的信息资源和前提条件。

作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力。

(3)模型建立

在模型假设的基础上,首先区分哪些是常量、哪些是变量、哪些是已知量、哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系。

利用适当的数学工具刻画各变量之间的关系(等式或不等式),建立相应的数学结构(命题、表格、图形等),从而构造出所研究问题的数学模型。

(4)模型求解

构造数学模型之后,再根据已知条件和数据、分析模型的特征和结构特点,设计或采用求解模型的数学方法和算法,主要包括解方程、画图形、逻辑运算、数值计算等各种传统的和现代的数学方法,特别是现代计算机技术和数学软件的使用,可以快速、准确地进行模型的求解。

(5)模型的分析与检验

根据建模的目的和要求,对模型求解的数值结果进行数学上的分析,主要采用的方法有:进行变量之间依赖关系的分析,进行稳定性分析,进行系统参数的灵敏度分析,进行误差分析等。通过分析。

(6)模型应用

目前,数学模型的应用已经非常广泛,越来越渗透到社会学科、生命学科、环境学科等各个领域。而模型的应用才是数学建模的宗旨,也是对模型的最客观、最公正的检验。

因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的重要作用和意义。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式