球面坐标系中三重积分的计算方法
展开全部
利用球面坐标计算三重积分时,角φ的范围必是[0,π],角θ必是[0,2π],因为数据是根据积分区域的形状而定的。如果需要为每个点定义一组唯一的球面坐标, 则必须限制它们的范围。
在不改变角度的情况下,增加或减去任意数量倍的 ,从而不改变角点。在许多情况下,允许负径向距离也很方便,,该惯例是(−r,θ,φ)等效于(r,θ+ 180 °,φ)为任意r,θ和φ。此外(r,−θ,φ)等效于(r,θ,φ+ 180 °)。
数据分析
1、积分区域是球心在原点的球域,则角φ的范围是[0,π],角θ的范围是[0,2π];
2、若积分区域是球心在原点的上半球域,则角φ的范围是[0,π/2],角θ的范围是[0,2π];
3、若积分区域是球心在原点的右半球域,则角φ的范围是[0,π],角θ的范围是[-π/2,π/2];
4、若积分区域是球心在原点的球在第一卦限内的区域,则角φ的范围是[0,π/2],角θ的范围是[0,π/2]。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询