数据可视化
2023-04-26 · 百度认证:重庆猪八戒网络有限公司官方账号
数据可视化Data和信息可视化是两个相近的专业领域名词。狭义上的数字可视化指的是讲数据用统计图表方式呈现,而信息图形(信息可视化)则是将非数字的信息进行可视化。前者用于传递信息,后者用于表现抽象或复杂的概念、技术和信息。
而广义上的数据可视化则是数据可视化、信息可视化以及科学可视化等等多个领域的统称。
数据可视化起源于1960s计算机图形学,人们使用计算机创建图形图表,可视化提取出来的数据,将数据的各种属性和变量呈现出来。随着计算机硬件的发展,人们创建更复杂规模更大的数字模型,发展了数据采集设备和数据保存设备。同理也需要更高级的计算机图形学技术及方法来创建这些规模庞大的数据集。随着数据可视化平台的拓展,应用领域的增加,表现形式的不断变化,以及增加了诸如实时动态效果、用户交互使用等,数据可视化像所有新兴概念一样边界不断扩大。
而我们熟悉的那些饼图、直方图、散点图、柱状图等,是最原始的统计图表,它们是数据可视化的最基础和常见应用。作为一种统计学工具,用于创建一条快速认识数据集的捷径,并成为一种令人信服的沟通手段。传达存在于数据中的基本信息。所以我们可以在大量PPT、报表、方案以及新闻见到统计图形。
但最原始统计图表只能呈现基本的信息,发现数据之中的结构,可视化定量的数据结果。
面对复杂或大规模异型数据集,比如商业分析、财务报表、人口状况分布、媒体效果反馈、用户行为数据等,数据可视化面临处理的状况会复杂得多。
可能要经历包括数据采集、数据分析、数据治理、数据管理、数据挖掘在内的一系列复杂数据处理,然后由设计师设计一种表现形式,是立体的、二维的、动态的、实时的还是允许交互的。然后由工程师创建对应的可视化算法及技术实现手段。包括建模方法、处理大规模数据的体系架构、交互技术、放大缩小方法等。动画工程师考虑表面材质、动画渲染方法等,交互设计师也会介入进行用户交互行为模式的设计。
所以一个数据可视化作品或项目的创建,需要多领域专业人士的协同工作才能取得成功。人类能够操纵和解释如此来源多样、错综复杂跨领域的信息,其本身就是一门艺术。
2019-06-26 广告