1个回答
展开全部
要证:log(n)(n+1)>log(n+1)(n+2),
即要证log(n+1)/logn>log(n+2)/log(n+1)(换底公式)
即要证log(n+1)log(n+1)>logNlog(n+2)
而由基本不等式
lognlog(n+2)<((logn+log(n+2))/2)^2=(0.5logn(n+2))^2
=(0.5log(n+1-1)(n+1+1))^2
<(0.5log(n+1)^2)^2
=log(n+1)log(n+1)
故有题目结论。
即要证log(n+1)/logn>log(n+2)/log(n+1)(换底公式)
即要证log(n+1)log(n+1)>logNlog(n+2)
而由基本不等式
lognlog(n+2)<((logn+log(n+2))/2)^2=(0.5logn(n+2))^2
=(0.5log(n+1-1)(n+1+1))^2
<(0.5log(n+1)^2)^2
=log(n+1)log(n+1)
故有题目结论。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询