急求N道有关整式的运算的数学题(偶是初一,越多越好,越难越好)

各位好人啊,我这个礼拜六月考,请帮我出一些有关整式运算的题,尽量是完全平方公式和平方差公式的运算,偶是初一,越难越好,越多越好,但不要太难了别说没用的东东哦... 各位好人啊,我这个礼拜六月考,请帮我出一些有关整式运算的题,尽量是完全平方公式和平方差公式的运算,偶是初一,越难越好,越多越好,但不要太难了
别说没用的东东哦
展开
百度网友7d2fa91
2009-03-10 · TA获得超过808个赞
知道小有建树答主
回答量:256
采纳率:66%
帮助的人:86.4万
展开全部
定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也作分解因式。

意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。

分解因式与整式乘法互为逆变形。

因式分解的方法
[编辑本段]

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法,剩余定理法,分组分解法等。

一常规方法
[编辑本段]

⑴提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b).

⑵运用公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
其余公式请参看上边的图片。
例如:a^2 +4ab+4b^2 =(a+2b)^2(参看右图).

二非常规方法
[编辑本段]

⑶分组分解法
把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。
用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。

例如:m^2+5n-mn-5m=m^2-5m -mn+5n
= (m^2 -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n).

⑷拆项、补项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。

例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
也可以参看右图。

⑸配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例如:x^2+3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5).
也可以参看右图。

⑹十字相乘法
这种方法有两种情况。

①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .

②kx^2+mx+n型的式子的因式分解
如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
·a b
· ×
·c d
例如:因为
·1 -3
· ×
·7 2
且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).

多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”

几道例题

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
也可以参看右图。

2.求证:对于任何实数x,y,下式的值都不会为33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
(分解因式的过程也可以参看右图。)
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。

4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
也可以参看右图。

三特殊方法
[编辑本段]

⑺应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.

例如:f(x)=x^2+5x+6,f(-2)=0,则可确定x+2是x^2+5x+6的一个因式。(事实上,x^2+5x+6=(x+2)(x+3).)

⑻换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。

例如在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则
原式=(y+1)(y+2)-12
=y^2+3y+2-12=y^2+3y-10
=(y+5)(y-2)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1).
也可以参看右图。

⑼求根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .

例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

⑽图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).

与方法⑼相比,能避开解方程的繁琐,但是不够准确。

例如在分解x^3 +2x^2 -5x-6时,可以令y=x^3 +2x^2 -5x-6.
作出其图像,与x轴交点为-3,-1,2
则x^3 +2x^2-5x-6=(x+1)(x+3)(x-2).

⑾主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

⑿特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例如在分解x^3+9x^2+23x+15时,令x=2,则
x^3 +9x^2 +23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7 .
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

⒀待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。
于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)
=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd
由此可得a+c=-1,
ac+b+d=-5,
ad+bc=-6,
bd=-4.
解得a=1,b=1,c=-2,d=-4.
则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).
也可以参看右图。

⒁双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法。用一道例题来说明如何使用。

例:分解因式:x^2+5xy+6y^2+8x+18y+12.
分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。
解:
x 2y 2
① ② ③
x 3y 6
∴原式=(x+2y+2)(x+3y+6).
双十字相乘法其步骤为:
①先用十字相乘法分解2次项,如十字相乘图①中X^2+5xy+6y^2=(x+2y)(x+3y);
②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y^2+18y+12=(2y+2)(3y+6);
③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。

参考资料: http://baike.baidu.com/view/19859.html?tp=0_11

wosigeda
2009-03-11 · TA获得超过337个赞
知道答主
回答量:73
采纳率:0%
帮助的人:0
展开全部
(a的二次方×2ab×b的二次方)÷(a+b)的二次方
=(a+b)的二次方÷(a+b)的二次方
=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
紫冰可心
2009-03-12 · TA获得超过604个赞
知道答主
回答量:80
采纳率:0%
帮助的人:0
展开全部
初一数学试题
一、填空题(2分×15分=30分)
1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 。
2、计算:①100×103×104 = ;②-2a3b4÷12a3b2 = 。
3、(8xy2-6x2y)÷(-2x)= 。
4、(-3x-4y) ·( ) = 9x2-16y2。
5、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 。
6、如果x+y=6, xy=7, 那么x2+y2= 。
7、有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为______________公顷。
8、 太阳的半径是6.96×104千米,它是精确到_____位,有效数字有_________个。
9、 小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于7)=_______。
10、图(1),当剪子口∠AOB增大15°时,∠COD增大 。
11、吸管吸易拉罐内的饮料时,如图(2),∠1=110°,则∠2= ° (易拉罐的上下底面互相平行)
图(1) 图(2) 图(3)
12、平行的大楼顶部各有一个射灯,当光柱相交时,如图(3),∠1+∠2+∠3=________°

二、选择题(3分×6分=18分)(仔细审题,小心陷井!)
13、若x 2+ax+9=(x +3)2,则a的值为 ( )
(A) 3 (B) ±3 (C) 6 (D)±6
14、如图,长方形的长为a,宽为b,横向阴影部分为长方形,
另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面
积是( )

(A) ab-bc+ac-c 2 (B) ab-bc-ac+c 2
(C) ab- ac -bc (D) ab-ac-bc-c 2
15、下列计算 ① (-1)0=-1 ②-x2.x3=x5③ 2×2-2= ④ (m3)3=m6
⑤(-a2)m=(-am)2正确的有………………………………( )
(A) 1个 (B) 2个 (C) 3个 (D) 4个

图a 图b
16、 如图,下列判断中错误的是 ( )
(A) ∠A+∠ADC=180°—→AB‖CD
(B) AB‖CD—→∠ABC+∠C=180°
(C) ∠1=∠2—→AD‖BC
(D) AD‖BC—→∠3=∠4
17、如图b,a‖b,∠1的度数是∠2的一半,则∠3等于 ( )
(A) 60° (B) 100° (C) 120 (D) 130°
18、一个游戏的中奖率是1%,小花买100张奖券,下列说法正确的是 ( )
(A)一定会中奖 (B)一定不中奖(C)中奖的可能性大(D)中奖的可能性小

三、解答题:(写出必要的演算过程及推理过程)
(一)计算:(5分×3=15分)
19、123²-124×122(利用整式乘法公式进行计算)

20、 9(x+2)(x-2)-(3x-2)2 21、 0.125100×8100

22、某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌。现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?若10滴这种杀虫剂为 升,问:要用多少升杀虫剂?(6分)

24、一个角的补角比它的余角的二倍还多18度,这个角有多少度?(5分)

2007年七年级数学期中试卷
(本卷满分100分 ,完卷时间90分钟)
姓名: 成绩:
一、 填空(本大题共有15题,每题2分,满分30分)
1、如图:在数轴上与A点的距离等于5的数为 。

2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位。
3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。
4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元。
5、当a=-2时,代数式 的值等于 。
6、代数式2x3y2+3x2y-1是 次 项式。
7、如果4amb2与 abn是同类项,那么m+n= 。
8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 。
9、如果∣x-2∣=1,那么∣x-1∣= 。
10、计算:(a-1)-(3a2-2a+1) = 。
11、用计算器计算(保留3个有效数字): = 。
12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次)。
2,6,7,8.算式 。
13、计算:(-2a)3 = 。
14、计算:(x2+ x-1)•(-2x)= 。
15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= 。(不能用计算器,结果中保留幂的形式)
二、选择(本大题共有4题,每题2分,满分8分)
16、下列说法正确的是…………………………( )
(A)2不是代数式 (B) 是单项式
(C) 的一次项系数是1 (D)1是单项式
17、下列合并同类项正确的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )
A、 B、 -1 C、 D、以上答案不对
19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式
|a + b| - 2xy的值为( )
A. 0 B.-2 C.-1 D.无法确定
三、解答题:(本大题共有4题,每题6分,满分24分)
20、计算:x+ +5

21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-

22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什么发现或想法?

23、已知:A=2x2-x+1,A-2B = x-1,求B

四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)
24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a
求:(1)梯形ADGF的面积
(2)三角形AEF的面积
(3)三角形AFC的面积

25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形
拼成一个正方形,求图形中央的小正方形的面积,你不难找到
解法(1)小正方形的面积=
解法(2)小正方形的面积=
由解法(1)、(2),可以得到a、b、c的关系为:

26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.
(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)
(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)

27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人。如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物。
求:(1)所有队员赠送的礼物总数。(用m的代数式表示)
(2)当m=10时,赠送礼物的总数为多少件?

28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%。那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?

2006年第一学期初一年级期中考试
数学试卷答案
一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3
7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6
11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1
二、16、D 17、B 18、B 19、D
三、20、原式= x+ +5 (1’)
= x+ +5 (1’)
= x+ +5 (1’)
= x+4x-3y+5 (1’)
= 5x-3y+5 (2’)

21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)
= x4-16-x4+4x2-4 (1’)
= 4x2-20 (1’)
当x = 时,原式的值= 4×( )2-20 (1’)
= 4× -20 (1’)
=-19 (1’)

22、解:原式=x2-2x+1+x2-9+x2-4x+3 (1’)
=3x2-6x-5 (1’)
=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)
=3×2-5 (1’)
=1 (1’)

23、解: A-2B = x-1
2B = A-(x-1) (1’)
2B = 2x2-x+1-(x-1) (1’)
2B = 2x2-x+1-x+1 (1’)
2B = 2x2-2x+2 (1’)
B = x2-x+1 (2’)

24、解:(1) (2’)
(2) (2’)
(3) + - - = (3’)

25、解:(1)C2 = C 2-2ab (3’)
(2)(b-a)2或者b 2-2ab+a 2 (3’)
(3)C 2= a 2+b 2 (1’)

26、解:(25)2 = a2 (1’)
a = 32 (1’)
210 = 22b (1’)
b = 5 (1’)
原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)
= a2- b2- a2- ab- b2 (1’)
=- ab- b2 (1’)
当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)
若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以。

27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)
第二小队送给第一小队共m•(m+2)件 (2’)
两队共赠送2m•(m+2)件 (2’)
(2):当m = 2×102+4×10=240 件 (2’)

28、设:1997年商品价格为x元 (1’)
1998年商品价格为(1+5%)x元 (1’)
1999年商品价格为(1+5%)(1+10%)x元 (1’)
2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)
=0.0164=1.64% (2’)
答:2000年比1997年涨价1.64%。 (1’)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王尚贞
2009-03-10
知道答主
回答量:90
采纳率:0%
帮助的人:0
展开全部
jode
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式