一道高二数学导数题~拜托了

设函数f(x)=a^3+bx+c(a不等于0)为奇函数,其图像在(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f(x)最小值为-12(1)求a、b、c的值(2... 设函数f(x)=a^3+bx+c(a不等于0)为奇函数,其图像在(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f(x)最小值为-12
(1)求a、b、c的值
(2)求函数f(x)的单调区间,求函数在闭区间-1到3的最大值
展开
我不是他舅
2009-03-10 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.9亿
展开全部
奇函数
f(-x)=-ax^3-bx+c=-f(x)=-ax^3-bx-c
所以c=-c
c=0
f'(x)=3ax^2+b
x=1,f'(1)=3a+b
所以切线斜率是3a+b,
和x-6y-7=0垂直,所以斜率3a+b=-6

f'(x)=3ax^2+b有最小值则3a>0,且最小值=b=-12
所以a=2,符合3a>0
所以a=2,b=-12,c=0

f(x)=2x^3-12x
f'(x)=6x^2-12=0
x=-√2,x=√2,
x=√2在[-1,3]内
-1<=x<=√2时,f'(x)<0,f(x)是减函数
√2<=x<=3时,f'(x)>0,f(x)是增函数
这就是单调区间
所以f(√2)是极小值,
显然也是最小值
所以最大值在边界取道
f(-1)=10,f(3)=18
所以最大之=18
typ123321
2009-03-10 · TA获得超过1631个赞
知道大有可为答主
回答量:1150
采纳率:0%
帮助的人:0
展开全部
"函数f(x)=a^3+bx+c(a不等于0)为奇函数"这句话不成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
三水渝
2009-03-10
知道答主
回答量:5
采纳率:0%
帮助的人:0
展开全部
奇函数 有 -f(x)=f(-x)
f(x)在x=1处的导数=-6
还有一个方程是在导函数f(x)最小值为-12 处产生
于是可以求 abc
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式