求函数极限的方法有几种?具体怎么求?

 我来答
狄真0Ga
高粉答主

2019-07-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:967
采纳率:100%
帮助的人:26.9万
展开全部

1、利用函数的连续性求函数的极限(直接带入即可)

如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。

2、利用有理化分子或分母求函数的极限

a.若含有,一般利用去根号

b.若含有,一般利用,去根号

3、利用两个重要极限求函数的极限

()

4、利用无穷小的性质求函数的极限

性质1:有界函数与无穷小的乘积是无穷小

性质2:常数与无穷小的乘积是无穷小

性质3:有限个无穷小相加、相减及相乘仍旧无穷小

5、分段函数的极限

求分段函数的极限的充要条件是:

参考资料:百度百科-函数极限

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友9fd5cf7
高粉答主

推荐于2019-10-30 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:286
采纳率:0%
帮助的人:10.4万
展开全部

第一种:利用函数连续性:lim f(x) = f(a) x->a

(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

第二种:恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

第三种:通过已知极限

特别是两个重要极限需要牢记。

扩展资料

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
暖暖炊烟袅袅
2018-06-27 · TA获得超过21.1万个赞
知道大有可为答主
回答量:1.3万
采纳率:95%
帮助的人:1607万
展开全部

一、利用极限四则运算法则求极限

函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)

(类似的有数列极限四则运算法则)现以讨论函数为例。
对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:

1.直接代入法

对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。
直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。

2.无穷大与无穷小的转换法

在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。

(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。

(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。

3.除以适当无穷大法

对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。

4.有理化法

适用于带根式的极限。

二、利用夹逼准则求极限

函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)
利用夹逼准则关键在于选用合适的不等式。


三、利用单调有界准则求极限

单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。

四、利用等价无穷小代换求极限

常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。

等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。

五、利用无穷小量性质求极限

在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。

六、利用两个重要极限求极限

使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。

七、利用洛必达法则求极限

如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
你实和独定吗1S
2019-10-13 · TA获得超过186个赞
知道答主
回答量:13
采纳率:0%
帮助的人:8414
展开全部

怎么求函数极限,数学中怎样求一个函数的极限呢

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一零哑剧

2019-12-21 · TA获得超过2.6万个赞
知道大有可为答主
回答量:6.6万
采纳率:45%
帮助的人:2385万
展开全部
一、利用极限四则运算法则求极限。函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=a,limg(x)=b,则。lim[f(x)±g(x)]=limf(x)±limg(x)=a±b。lim[f(x)・g(x)]=limf(x)・limg(x)=a・b。lim==(b≠0)。(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:1.直接代入法。对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。2.无穷大与无穷小的转换法。在相同的变化过程中,若变量不取零值,则变量为无穷大量。圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。3.除以适当无穷大法。对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。4.有理化法。适用于带根式的极限。二、利用夹逼准则求极限。函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>n)有定义,若①f(x)≤g(x)≤h(x)。②f(x)=h(x)=a(或f(x)=h(x)=a),则g(x)(或g(x))存在,且g(x)=a(或g(x)=a)。(类似的可以得数列极限的夹逼定理)。利用夹逼准则关键在于选用合适的不等式。三、利用单调有界准则求极限。单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限。常见等价无穷小量的例子有:当x→0时,sinx~x。tanx~x。1-cosx~x。e-1~x。ln(1+x)~x。arcsinx~x。arctanx~x。(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限。在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限。使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限。如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式