微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
扩展资料
微积分历史:从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产生了。公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
参考资料来源:百度百科-牛顿-莱布尼茨公式
参考资料来源:百度百科-微积分
所谓“把图形分割成无穷份,再累加起来”正是微积分里的思想,这被称为“黎曼积分”,又叫“定积分”,以后通过微积分基本定理,可以把定积分和积分联系起来.
三言两语是说不清的,买本书自学吧,祝你成功
设f(x)在[a,b]的最大值为M,最小值为m.从微积分基本定理:
F(b)-F(a)=∫[a,b]f(x)dx.又从拉格朗日公式:
存在c∈(a,b).F(b)-F(a)=F′(c)(b-a)=f(c)(b-a).
f(c)=(1/(b-a))∫[a,b]f(x)dx(此即f(x)在[a,b]上的平均值)
而m≤f(c)≤M,∴m≤(1/(b-a))∫[a,b]f(x)dx≤M。均值不等式成立。