利用二重积分求下列各曲面所围成的立体体积

由平面z=0,圆拄面x^2+y^2=ax,和旋转抛物面x^2+y^2=z所围成的立体这题目我用极坐标算出来是(3a^4∏)/64但答案却是(3a^4∏)/32所以想在这里... 由平面z=0,圆拄面x^2+y^2=ax,和旋转抛物面x^2+y^2=z所围成的立体
这题目我用极坐标算出来是(3a^4∏)/64 但答案却是(3a^4∏)/32
所以想在这里请教大家,让大家帮忙列个式子 ,然后再告诉我最后的答案 是我对还是答案错了 谢谢
我的式子是 ∫(0→∏/2)dθ∫(0→acosθ) (r^2cos^2θ+ r^2sin^2θ)•r dr算出来是(3a^4∏)/64
拜托大家了 答的好有加分哦。。谢谢
展开
truetramp
2009-03-15 · TA获得超过355个赞
知道小有建树答主
回答量:82
采纳率:0%
帮助的人:0
展开全部
答案是正确的。

x^2+y^2 ≤ ax, 化成极坐标: r ≤ acosθ, -π/2 ≤ θ ≤ π/2

原式 = ∫(-π/2 → π/2)dθ ∫(0 → acosθ)r^2·rdr
= ∫(-π/2 → π/2)a^4(cosθ)^4/4 dθ (偶函数,对称区间积分)
= a^4/2 ∫(-π/2 → π/2)(cosθ)^4/4 dθ
= a^4/2 · [π/2×(3×1)/(4×2)] = 3a^4π/32
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
robin_2006
2009-03-15 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8501万
展开全部
由x^2+y^2≤ax得θ的范围是[-π/2,π/2],不是[0,π/2]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式