六年级奥数题

要答案!!!!!!!!!!!!!!!!!!!... 要答案!!!!!!!!!!!!!!!!!!! 展开
匿名用户
2016-08-29
展开全部
一、工程问题
甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
二.鸡兔同笼问题
鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解:
4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.
答案为476
解:设原数个位为a,则十位为a+1,百位为16-2a
根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,则a+1=7 16-2a=4
答:原数为476。
四.排列组合问题
有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种 B 32种 C 24种 D 2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
五.容斥原理问题
一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
答案:及格率至少为71%。
假设一共有100人考试
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5题中有1题做错的最多人数)
87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)
100-29=71(及格的最少人数,其实都是全对的)
及格率至少为71%
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:
6*4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
6*5+2+1=33
如果黑球或白球其中有等于9个的,那么就是:
6*5+1+1=32
七.路程问题
狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
八.比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快
答案:甲收8元,乙收2元。
解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以
甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。
所以,今年的成本占售价的22/25
务必要选我哦
水蕴邛霞月
2019-09-03 · TA获得超过3788个赞
知道大有可为答主
回答量:3156
采纳率:29%
帮助的人:220万
展开全部

请观察下面的图形,绿色部分别的样吃不着,淡绿色部分由于相邻的羊都能吃到,所以相邻两羊各吃一半。以“左”区域为例,以虚线隔开的两部分每只羊都能吃到一半,那么对一只羊而言,就相当于将虚线两侧对折,恰好相当于只能吃到虚线部分一样,“右”区域情况也相同,所以每只羊吃到的正好是正方形面积的1/4,由此可以算出,两只羊吃到的面积就是:
S
=
2×(1/4)×(2×2)
=
1/2(米²)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友f8b38e2
推荐于2017-11-27 · TA获得超过1050个赞
知道答主
回答量:288
采纳率:0%
帮助的人:0
展开全部
六年级奥数测试题

(每道题都要写出详细解答过程)

1. 三个数的和是555,这三个数分别能被3,5,7整除,而且商都相同,求这三个数。

2. 已知A是一个自然数,它是15的倍数,并且它的各个数位上的数字只有0和8两种,问A最小是几?

3. 把自然数依次排成以下数阵:

1,2,4,7,…

3,5,8,…

6,9,…

10,…



现规定横为行,纵为列。求

(1) 第10行第5列排的是哪一个数?

(2) 第5行第10列排的是哪一个数?

(3) 2004排在第几行第几列?

4. 三个质数的乘积恰好等于它们的和的11倍,求这三个质数。

5. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

6. 在800米的环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4根彩旗没动,问现在的彩旗间隔多少米?

7. 13511,13903,14589被自然数m除所得余数相同,问m最大值是多少?

8. 求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少个?

9. 有一列数:1,999,998,1,997,996,1,…从第3个数起,每一个数都是它前面2个数中大数减小数的差。求从第1个数起到999个数这999个数之和。

10. 从200到1800的自然数中有奇数个约数的数有多少个?

11. 在下图中,有左右两个一样的等腰直角三角形,其面积都是100,分别沿着图中的虚线剪下两个小正方形,请你求一下两个正方形的面积各是多少,并比较大小。

12. 甲说:“我和乙、丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们三人仍有钱100元。”丙说:“我的钱连30元都不到。”问三人原来各有多少钱?

13. B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?

14. 一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?

15. 把1296分为甲、乙、丙、丁四个数,如果甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则四个数相等。求这四个数各是多少?
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
道晓庞微月
2019-11-15 · TA获得超过3893个赞
知道大有可为答主
回答量:3052
采纳率:34%
帮助的人:382万
展开全部
题1.甲、乙两运动员作800米赛跑两次:第一次,甲让乙先跑50米,结果甲比乙早到15秒钟;第二次,甲让乙先跑200米,结果当乙跑到时甲还差80米。问跑800米,甲乙各需多少秒?
设甲速度为x,乙速度为y,
(800-15y-50)/y=800/x
(800-200)/y=(800-80)/x
解得:x=20/3,
y=50/9
800/(20/3)=120,
800/(50/9)=144
甲需120秒,乙需144秒。
题3.有N个自然数相加:1+2+3+4+......+N=aaa,那么n=36.
根据题意有:n(1+n)/2=aaa
就是:
n²+n-2*aaa=0
因为n是整数,
Det=1+8*aaa
,必为完全平方数。
设aaa=111,222,333,444,555,666,777,888,999,
可知只有666*8+1是完全平方数,此结果为73,
所以
n=(-1+73)/2=36
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
笃勋盈高旻
2019-03-11 · TA获得超过3838个赞
知道大有可为答主
回答量:3113
采纳率:30%
帮助的人:197万
展开全部

请观察下面的图形,绿色部分别的样吃不着,淡绿色部分由于相邻的羊都能吃到,所以相邻两羊各吃一半。以“左”区域为例,以虚线隔开的两部分每只羊都能吃到一半,那么对一只羊而言,就相当于将虚线两侧对折,恰好相当于只能吃到虚线部分一样,“右”区域情况也相同,所以每只羊吃到的正好是正方形面积的1/4,由此可以算出,两只羊吃到的面积就是:
S
=
2×(1/4)×(2×2)
=
1/2(米²)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(43)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式