已知tanα+sinα=a,tanα-sinα=b,求证(a^2-b^2)^2=16ab
展开全部
左=(a^2-b^2)^2
=(a+b)^2·(a-b)^2
=[(tanα+sinα)+(tanα-sinα)]^2·[(tanα+sinα)-(tanα-sinα)]^2
=[2tanα]^2·[2sinα]^2
=16[tanα·sinα]^2
=16(tanα)^2·(sinα)^2;
右=16ab
=16(tanα+sinα)·(tanα-sinα)
=16[(tanα)^2-(sinα)^2]
=16[(sinα)^2/(cosα)^2-(sinα)^2]
=16(sinα)^2[(secα)^2-1]
=16(sinα)^2·(tanα)^2
∴左=右
=(a+b)^2·(a-b)^2
=[(tanα+sinα)+(tanα-sinα)]^2·[(tanα+sinα)-(tanα-sinα)]^2
=[2tanα]^2·[2sinα]^2
=16[tanα·sinα]^2
=16(tanα)^2·(sinα)^2;
右=16ab
=16(tanα+sinα)·(tanα-sinα)
=16[(tanα)^2-(sinα)^2]
=16[(sinα)^2/(cosα)^2-(sinα)^2]
=16(sinα)^2[(secα)^2-1]
=16(sinα)^2·(tanα)^2
∴左=右
参考资料: http://zhidao.baidu.com/question/90850258.html?si=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询